

February 20, 2008

_			
П	$\Gamma \Gamma$	٦.	
	ı		

Terry Berends

THRU:

George Hilsinger/Rick Gifford

FROM:

Moe Davari / Kristen Daniel

South Central Region

(509) 222-2402 / (509) 222-2431

SUBJECT:

US 395/Columbia Drive to SR 240 I/C Improvements

This Roundabout Geometric Design Approval has been evaluated and documented in

MP 18.25 to MP 18.59

XL2527

Roundabout Geometric Design Approval

4	accordance with Washington State Department of Transportationals and current design standards and procedures. Moe Davari, P.E., Project Engineer	
	Date EXPIRES 4/12/08	
	☑ Geometric Design Recommended for Approval ☐ Geometric Design Approval]
	Regional Traffic Engineer - South Central Region Date	
	Geometric Design Approval	
1	Geometric Design Approval	
	Assistant State Design Engineer for South Central Region 5-6-08 Date	

XL2527 – US 395/ Columbia Drive to SR 240 Interchange February 20, 2008 Page 2

Project Overview

This project proposes to provide the US 395 / SR 240 interchange improvements south of the Blue Bridge in Kennewick to improve traffic flow and reduce the risk of collisions. The improvements include adding a lane in each direction to US 395, constructing an off-ramp on the right side of southbound US 395 to SR 240, constructing an on-ramp on the left side of northbound US 395 from SR 240, constructing two roundabouts, one bridge, seven retaining walls, median, curb and gutter, landscaping, storm drainage systems, and illumination. No pedestrians or bicycles are allowed in the interchange area currently or in the future.

A mini VE-Study was held in April of 2006. The focus of the study was to switch US 395 southbound and SR 240 westbound and to maintain two lanes of traffic on southbound US 395. Several alternatives were proposed as part of this study. The preferred alternative replaced the partial cloverleaf interchange with a diamond interchange with roundabouts at the terminals on Columbia Drive. By removing the loop ramps, US 395 could maintain two lanes of travel south over the Columbia Drive bridge. It was deemed possible that if funding weren't available then the project could potentially be phased where the half diamond would be built on the west side of the interchange and the loop ramp left in place on the east side. Other alternatives included a diamond interchange with signals at the terminals, and a SPUI option.

The traffic analysis included not only the preferred alternative but also the signal option and the possible phased options. During the course of that analysis it was determined that the half diamond with the east side loop ramp in place failed in the design year because the sheer volume of traffic on the single northbound lane of US 395 was too great for the lane to handle. With the loop ramp removed, it became possible to provide two lanes of traffic northbound and brought the level of service up to acceptable levels. Due to the existing lane and shoulder widths of the Columbia Drive bridge in each direction, there isn't enough available taper length on or after the bridge to include two lanes and a right lane off ramp for NB US 395 to WB SR 240 traffic. Furthermore, where the loop ramp ties in to the westbound SR 240 there isn't sufficient taper length to accommodate a merge taper either. This creates a conflict point and is part of what caused it to be a High Accident Location (HAL). Removing the east side loop ramp removes a HAL from this interchange. These factors effectively eliminated the half diamond alternative with the existing east side loop ramp left in place.

Regional and HQ Traffic ran models of signals and roundabouts at the diamond interchange and found that the teardrop roundabouts performed better at this location than the signals. With signals, traffic queue lengths were such that traffic backed up onto mainline US 395. This reduced the desirability of the signals as an alternative.

The SPUI option was also eliminated because in order to build that they would be required to remove and replace the Columbia Drive Bridge. Removal of that bridge was not part of the original scope and would increase the cost of the project beyond the original budgeted amount.

Conceptual design approval was signed September 27, 2007 for the proposed teardrop roundabouts in the US395/SR240 Interchange project. This is a request for geometric approval of the proposed teardrop roundabouts.

XL2527 – US 395/ Columbia Drive to SR 240 Interchange February 20, 2008 Page 3

For review and comment, attached is the roundabout geometric approval package that contains information/data/materials as given below:

- Channelization Plans (including Splitter Island Details)
- Design Decisions
- Geometric Data Spreadsheet
- Fastest, Natural, and Truck Turning Paths
- Sight Distance Display
- Signing and Illumination Plan

Currently, we are working towards Design Approval for the subject project. This project proposes to provide the US 395 / SR 240 interchange improvements south of the Blue Bridge in Kennewick to improve traffic flow and reduce the risk of collisions. The improvements include adding a lane in each direction to US 395, constructing an off-ramp on the right side of southbound US 395 to SR 240, constructing an on-ramp on the left side of northbound US 395 from SR 240, constructing two roundabouts, one bridge, six retaining walls, median, curb and gutter, landscaping, storm drainage systems, and illumination. No pedestrians or bicycles are allowed in the interchange area currently or in the future.

It was determined during design to leave a single lane on ramp from WB Columbia Drive to NB US 395 separate from the roundabout and remove any connection from the roundabout to NB US 395. Vertical alignment requirements from the roundabout to mainline US 395 caused the merge point of the NB on-ramp to be very close to the merge point for EB SR 240 traffic and NB US 395. The distance is substandard and in order to provide more distance between the two merge points, the Columbia Drive to US 395 on-ramp was left separate from the roundabout. There was also concern that congestion on mainline US 395 could result in traffic backups into the roundabout should the on-ramp be connected there causing the roundabout to fail.

There is a significant posted speed reduction from SR 240 to Columbia Drive. Traffic is moving at 60 MPH on SR 240 and must slow down to 35 MPH when entering Kennewick at Columbia Drive. As the interchange currently stands, traffic does not slow down as they enter into the busy commercial area. With the roundabouts in place, traffic will be forced to slow in order to safely navigate the roundabouts. This will slow traffic entering the city and increase safety near the interchange.

A project analysis is approved and several deviations have been identified:

- o Project Analysis Proposed design level modified to a level between MDL-4 and P-1 design standards for US 395.
- o Deviation #1 Vertical Clearance under Bridge 395/16. We are lowering the grade of SR 240/Columbia Drive to give us 15.75' of vertical under the bridge but will still be unable to meet the minimum 16' required.
- o Deviation #2 An on-ramp on the left side of traffic SR 240 will become and on ramp merging with US 395 on the left side of NB US 395. This is consistent with driver expectancy and will allow two lanes for NB US 395 traffic.

XL2527 – US 395/ Columbia Drive to SR 240 Interchange February 20, 2008 Page 4

Deviation #3 – Ramp Spacing between the SB off-off connection and the NB on-on connection on US 395 – Limited area prevents us from spacing the connections the minimum 1000' apart. The traffic analysis concluded that it will not cause any operational problems to have them closer together.

o Deviation #4 – Vertical Curve Lengths on US 395 SB – Curve lengths do not meet the minimum design speed of 50 mph but will meet the 45 mph posted speed requirements

for comfort and 2' height.

Deviation #5 – Deceleration length of off ramp from SB US 395 to Columbia Drive –
 Limited geometrics and the adjacent off ramp to SR 240 westbound prevents a full taper length.

O Deviation #6 (Combined with Deviation #4) – Superelevation of new SB US 395 curve – limited geometrics required a tight radius curve in order to fit new alignment within the available area. The radius and superelevation curve will meet the posted design speed requirement but not the 50 mph design speed. According to the individual who performed the traffic analysis, it won't have an impact on the capacity of the new roadway.

If you have any questions or require any additional information, please contact me at (509) 222-2402 or Kristen Daniel at (509) 222-2431

MD/KD: jj

Attachments: Geometric Approval Package

cc: Project File

US 395 & SR 240 Traffic Signal Analysis in support of the Roundabout Justification

June 2007

Prepared By:

Washington State
Department of Transportation
Corey N. Hert, PE, PTOE
SouthCentral Region
2409 Rudkin Road
Union Gap, WA 98903-1648

US 395 & SR 240

Traffic Signal Analysis in support of the Roundabout Justification

June 2007

Scope of the Operational Analysis

It has been proposed to modify the US 395/SR 240 interchange that lies to the south of the "Blue Bridge" connecting the cities of Pasco and Kennewick, WA. The South Central Region has proposed modifications to improve the flow of traffic through the interchange. This will be accomplished by providing 2 lanes to US 395 in the north- and southbound movements. This would include the removal of all the loop ramps to be replaced by two roundabouts to service access to/from Columbia Drive. The purpose of this analysis is to analyze traffic signal alternatives in the design year and compare them to the proposed roundabout alternative.

Forecast Traffic Volumes

The forecast traffic volumes for this traffic signal analysis were developed in the US 395 & SR 240 Interchange Justification Report Traffic Analysis, June 2007, which contains the roundabout analysis. The traffic volumes were calculated by the Traffic Data Office (TDO) for 2009 and 2029. The traffic volumes for the various traffic signal alternatives are identical to those given for the roundabout analysis.

For the purposes of this operational analysis, only the PM peak in the year 2029 was analyzed. While some movements are counterflow in the AM peak, the critical volumes were larger in the PM peak. Volumes are similar enough in nature to make only a PM peak analysis necessary for the purposes of this study

Traffic Signal Analysis

Trafficware Synchro was chosen to evaluate signal operation for the alternatives analysis. In most cases, Synchro will give results different than the 2000 Highway Capacity Manual and the Highway Capacity Software. Some of these deviations are necessary to accommodate modeling of coordination and actuation. When an intersection is coordinated, Synchro explicitly calculates the progression factor, while with the Highway Capacity Software (HCS+), it is necessary to guess about the effects of coordination. Synchro calculates the effects of coordination automatically and more accurately.

For the purposes of consistency, all signalized intersections were evaluated using Synchro. The Synchro values for control delay were spot checked against University of Florida McTrans Center's Highway Capacity Software (HCS+), and found to be close enough for the purposes of this evaluation. The slight differences in calculated values can be attributed to different green times, the allowance for dual ring controllers in Synchro, and calculation rounding differences.

Trafficware SimTraffic was chosen to evaluate 95th percentile queue lengths for the alternative analysis. SimTraffic provides a more accurate queue length than Trafficware Synchro because the model takes into account peak hour factor (PHF) adjustments, spillback beyond turning bays, and other subtle traffic flow interactions.

Assumptions

There following are the assumptions that were made to complete this analysis:

- 1. Trafficware Synchro was used instead of University of Florida McTrans Center's Highway Capacity Software (HCS+) to perform the traffic signal analysis. The assumption is that the Synchro output better accommodates modeling of coordination and actuation.
- 2. The existing US 395 overcrossing currently provides 4 lanes of travel for the Columbia Drive/SR 240 connection. Widening this structure or raising the structure would be cost prohibitive. Any alternative that requires more than 4 lanes under the structure will be rejected.
- 3. Peak Hour Factor (PHF) was assumed to be 0.90 in 2009 and 0.95 in 2029.

Proposed Roundabout Configuration

The South Central Region has proposed modifications the US 395/SR 240 interchange that would provide 2 lanes to US 395 in the north- and southbound movements. This would include the removal of all the loop ramps to be replaced by two roundabouts to service access to/from Columbia Drive.

The proposed roundabout configuration given in the *US 395 & SR 240 Interchange Justification Report Traffic Analysis*, June 2007 level of service and control delay for 2029 is shown in Table 1.

Table 1. Level of Service Analysis-Proposed Alternative: Diamond Interchange Two Roundabouts

	US 395 & N Weekday P		US 395 & SB Ramp Weekday PM Peak				
Year	Control Delay (sec)	Level of Service	Control Delay (sec)	Level of Service			
2029	7.6	Α	13.2	В			

Traffic Signal Alternatives Analysis

An operational analysis was performed of four traffic signal alternatives for 2029 to determine if traffic operation would fail. The analysis of the four alternatives is attached.

Alternative #1 involves the construction of an urban diamond interchange with dual left turns on both NB and SB ramps. This would necessitate 2 receiving lanes in the EB and WB direction. A WB left turn pocket would provide for a protected left turn phase. EB and WB free right turns would be constructed. The signals were evaluated and the Synchro level of service analysis is given in Table 2.

Table 2. Level of Service Analysis-Alternative #1: Diamond Interchange Dual Left

Year	US 395 & N Weekday P		US 395 & SB Ramp Weekday PM Peak			
	Control Delay (sec)	Level of Service	Control Delay (sec)	Level of Service		
2029	15.0	В	10.9	В		

A SimTraffic queuing analysis indicates the WB left turn at the SB ramp would have a 95th percentile queue of 488 feet. It is not feasible to construct an adequate left turn pocket and maintain 4 lanes at the US 395 overcrossing. This alternative was rejected.

Alternative #2: Diamond Interchange with Single Left Turn at NB Ramp

Alternative #2 involves the construction of an urban diamond interchange with dual left turns at the SB ramp and a single left turn at the NB ramp. This would require 2 receiving lanes in the EB direction and one receiving lane in the WB direction. A WB left turn pocket would provide for a protected left turn phase and could be constructed as a trap lane. EB and WB free right turns would constructed. The signals were evaluated and the Synchro level of service analysis is given in Table 3.

Table 3. Level of Service Analysis-Alternative #2: Diamond Interchange Single Left NB

Year	US 395 & N Weekday P		US 395 & SB Ramp Weekday PM Peak		
	Control Delay (sec)	Level of Service	Control Delay (sec)	Level of Service	
2029	53.2	D	32.5	С	

While Alternative #2 meets minimum requirements for level of service, it should be noted that both ramp movements exhibit a level of service of LOS F. Also, at the NB ramp the WB queue is 1200' and the

A SimTraffic queuing analysis indicates the at the NB ramp the WB 95th percentile queue is 1200'. At the SB ramp the EB queue is 1000'. This alternative, while not rejected, operates poorly in the design year.

Alternative #3: Single Point Interchange with Dual Left Turns

Alternative #3 involves the construction of a single point interchange with dual left turns at the NB and SB ramps. This would require 2 receiving lanes in the EB and WB direction. A WB left turn pocket would be installed and would provide for a protected left turn phase. The signals were evaluated and the Synchro level of service analysis is given in Table 4.

Table 4. Level of Service Analysis-Alternative #3: Single Point Interchange Dual Left Turns

	US 395 & NB	/SB Ramp				
	Weekday PM Peak					
Year	Control Delay (sec)	Level of Service				
2029	23.7	С				

While Alternative #3 meets minimum requirements for level of service, it must be rejected because it is not feasible to construct. It requires 5 lanes at the US395 overcrossing to provide the necessary roadway section.

Alternative #4 involves the construction of a single point interchange with dual left turns at the NB ramp and a single left turn at the SB ramp. This would require 2 receiving lanes in the EB direction and one receiving lane in the WB direction. A WB left turn pocket would be installed and would provide for a protected left turn phase. The signals were evaluated and the Synchro level of service analysis is given in Table 5.

Table 5. Level of Service Analysis-Alternative #4: Single Point Interchange Single Left Turn NB

	US 395 & NB	/SB Ramp				
	Weekday PM Peak					
	Control Delay	Level of				
Year	(sec)	Service				
2029	41.2	D				

While Alternative #3 meets minimum requirements for level of service, there may be a couple fatal flaws in this proposal. First, the geometrics required to bring the ramps to a single point and redice vehicle speeds safely may not fit in the interchange footprint. Second, the US 395 overcrossing may be too low to install the necessary signal heads for a single point configuration. The displays need to be mounted to the bottom of the structure for the typical single point interchange signal and will be 1'-8" below the bottom of the structure. Further evaluation of the structure height would be necessary before this alternative can move forward.

Conclusions

An operational analysis of the four alternatives indicates only one alternative that would function well enough in the design year to be considered as effective as the roundabout alternative. However, while Alternative #4 has a lower overall delay than the two roundabouts, it will break down years before the proposed alternative. It may have fatal design flaws in terms of geometrics and structure height. Further examination of the potential flaws would be required before Alternative #4 should be considered.

Appendix A Level of Service Reports and Queue Analysis

	_#	→	*-	-	4	×	4	K				
Lane Group	EBL	EBT	WBL	WBT	NBL	NET	SWL	SWT				
Lane Configurations	76.76		*	THE PERSON NAMED IN COLUMN		^	ሻ	*	STATISTICS AND DESCRIPTIONS OF PROPERTY			
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0X			
Satd. Flow (prot)	3303	0	1703	0	0	3406	1703	1792				
FIt Permitted	0.950		0.950	******		0.00	0.950					
Satd. Flow (perm)	3303	0	1703	0	0	3406	1703	1792				
Satd. Flow (RTOR)												
Volume (vph)	570	0	530	0	0	830	440	860				
Adj. Flow (vph)	600	0	558	0	0	874	463	905				
Lane Group Flow (vph)	600	0	558	0	0	874	463	905				
Turn Type	Prot	С	ustom			4	Prot					
Protected Phases	8					2	1	6				
Permitted Phases			4									
Total Split (s)	33.0	0.0	33.0	0.0	0.0	29.0	28.0	57.0				
Act Effct Green (s)	29.0		29.0		7075.7000	24.8	24.0	52.8				
Actuated g/C Ratio	0.32		0.32			0.28	0.27	0.59				
v/c Ratio	0.56		1.01			0.93	1.02	0.86				
Uniform Delay, d1	25.1		30.4			31.6	32.9	15.4				
Delay	25.5		66.7		24	41.5	72.9	19.5				
LOS	С		Е			D	Ε	В				
Approach Delay		25.5		66.7		41.5		37.6				
Approach LOS		С		E		D		D				
Stops (vph)	455		641			813	548	689				
Fuel Used(gal)	9		12			17	14	15				
CO Emisions (g/hr)	645		834			1202	981	1064				
NOx Emisions (g/hr)	125		162			234	191	207				
VOC Emisions (g/hr)	149		193			279	227	246				
Dilemma Vehicles (#)	0		0			44	0	44				
Queue Length 50th (ft)	144		~325			253	~272	394				
Queue Length 95th (ft)	197		#537			#371	#467	#679				
Internal Link Dist (ft)		254		211	685	601		986				
50th Up Block Time (%)			28%									
95th Up Block Time (%)			50%						11.00			
Turn Bay Length (ft)												
50th Bay Block Time %							-///					
95th Bay Block Time %												
Queuing Penalty (veh)			217									
Intersection Summary		加安温度		70					E TO VERENCE SE PER A			
Cycle Length: 90					ATTEN PERSON			SALES AND AND ADDRESS OF THE PARTY OF THE PA				
Actuated Cycle Length: 89												
Control Type: Actuated-Ur	ncoordina	ated										
Maximum v/c Ratio: 1.02												
Intersection Signal Delay:	41.2			Inte	rsectio	n LOS:	D	· · · · · · · · · · · · · · · · · · ·				
Intersection Capacity Utiliz	ation 90			ICU	Level	of Servi						
 Volume exceeds capa 	city, que	ue is th	eoretica	ally infini	te.							
Queue shown is maxim	ium after	two cy	cles.		11.0							
# 95th percentile volume	exceeds	s capac	ity, que	ue may	be long	jer.						
Queue shown is maxim	95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.											

√ ø1	≯ ø2	ø4
20 s	29 8	38's
№ ø6		_ ≠ _{ø8}
7 s	发展的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	23 sm

Intersection: 2: SB Ramp &

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 4: NB Ramp & Columbia Drive

Movement	EB	EB	WB	NE	NE	SW	SW
Directions Served	L	L	L	T	T	L	T
Maximum Queue (ft)	287	181	257	282	264	475	235
Average Queue (ft)	179	141	195	235	210	314	173
95th Queue (ft)	301	192	308	313	288	527	274
Link Distance (ft)	257	257	205	579	579	890	890
Upstream Blk Time (%)	0.03		0.14				
Queuing Penalty (veh)	0		72				7.
Storage Bay Dist (ft)							
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 16: Bend

Movement	SB	
Directions Served	T	
Maximum Queue (ft)	375	
Average Queue (ft)	143	
95th Queue (ft)	433	
Link Distance (ft)	396	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

ъ.	٠		*	1	4	*	4	1	/	1	\	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个个	7	ሻ	44					*5	र्स	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	0	3406	1524	1703	3406	0	0	0	0	1618	1623	C
FIt Permitted				0.950						0.950	0.953	
Satd. Flow (perm)	0	3406	1524	1703	3406	0	0	0	0	1618	1623	C
Satd. Flow (RTOR)			739									
Volume (vph)	0	830	890	440	1390	0	0	0	0	570	5	0
Adj. Flow (vph)	0	874	937	463	1463	0	0	0	0	600	5	C
Lane Group Flow (vph)	0	874	937	463	1463	0	0	0	0	300	305	C
Turn Type			Free	Prot						Perm		
Protected Phases		2		1	6						4	
Permitted Phases			Free			*				4		
Total Split (s)	0.0	25.0	0.0	25.0	50.0	0.0	0.0	0.0	0.0	20.0	20.0	0.0
Act Effct Green (s)		21.7	70.0	21.0	46.7					15.3	15.3	
Actuated g/C Ratio		0.31	1.00	0.30	0.67					0.22	0.22	
v/c Ratio		0.83	0.61	0.91	0.64					0.85	0.86	
Uniform Delay, d1		22.4	0.0	23.5	6.8					26.2	26.3	
Delay	530-17	26.7	0.0	31.6	3.9					35.0	35.9	
LOS		С	Α	С	Α			-		D	D	
Approach Delay		12.9			10.6						35.5	
Approach LOS		В			В						D	
Stops (vph)		745	0	416	518					273	280	
Fuel Used(gal)		16	7	8	10					5	5	
CO Emisions (g/hr)		1136	459	533	719					345	355	
NOx Emisions (g/hr)		221	89	104	140	-				67	69	
VOC Emisions (g/hr)		263	106	124	167					80	82	
Dilemma Vehicles (#)		57	0	0	134	-				0	0	-
Queue Length 50th (ft)		184	0	196	65					129	131	
Queue Length 95th (ft)		#284	0 m	#312	95					#260	#265	
Internal Link Dist (ft)		943			445			313			113	
50th Up Block Time (%)	74.					-11				14%	15%	
95th Up Block Time (%)										48%	49%	
Turn Bay Length (ft)			400	400			1.47-1111-1					
50th Bay Block Time %												
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary							i gada					
Cycle Length: 70		munition countries	HEISCHALLES									
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced	to pha	se 2:El	3T and	6:WBT,	Start o	f Yellow,	Master	Interse	ection			
Control Type: Actuated-Coo												
Maximum v/c Ratio: 0.91												
ntersection Signal Delay: 1	5.0			Int	ersectio	n LOS:	В					
ntersection Capacity Utiliza		6.6%				of Servi						1
95th percentile volume	excee	ds capa	city, que									
Queue shown is maximu	ım afte	er two c	ycles.			<u> </u>						
n Volume for 95th percer				by ups	tream s	ignal.						

→ ø2	▼ 01	l → ø4
5.	25 s	20 8

	۶	-	*	1	+-	*	4	†	1	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		十 十			十	7	ሻ	स	7			
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	0	3406	0	0	3406	1524	1618	1623	1524	0	0	0
Flt Permitted							0.950	0.953				
Satd. Flow (perm)	0	3406	0	0	3406	1524	1618	1623	1524	0	0	0
Satd. Flow (RTOR)						653			20			
Volume (vph)	0	1400	0	0	1300	620	530	5	440	0	0	0
Adj. Flow (vph)	0	1474	0	0	1368	653	558	5	463	0	0	0
Lane Group Flow (vph)	0	1474	0	0	1368	653	279	284	463	0	0	0
Turn Type		_				Free	Prot		Perm			
Protected Phases		2			6	520	3	8	_			
Permitted Phases						Free			8			
Total Split (s)	0.0	39.0	0.0	0.0	39.0	0.0	31.0	31.0	31.0	0.0	0.0	0.0
Act Effct Green (s)		35.0			35.0	70.0	27.0	27.0	27.0			
Actuated g/C Ratio		0.50			0.50	1.00	0.39	0.39	0.39			
v/c Ratio		0.87			0.80	0.43	0.45	0.45	0.77			
Uniform Delay, d1		15.4			14.6	0.0	15.9	16.0	17.9			
Delay LOS		6.1			15.2	0.0	16.5	16.6	21.8			
		A 6.1			B	Α	В	B	С			
Approach Delay Approach LOS		0. I A			10.3 B			18.9 B				
Stops (vph)		721			1027	0	192	193	360			
Fuel Used(gal)		12			24	6	4	4	300 7			
CO Emisions (g/hr)		871			1693	415	270	274	497			
NOx Emisions (g/hr)		169			329	81	52	53	97			
VOC Emisions (g/hr)		202			392	96	63	64	115			
Dilemma Vehicles (#)		137			93	0	0	0	0			
Queue Length 50th (ft)		14			242	Ô	91	93	162			
Queue Length 95th (ft)		#146			328	Ö	157	161	#312			
Internal Link Dist (ft)		445			1248	Ū		70			131	
50th Up Block Time (%)							19%	20%	38%			
95th Up Block Time (%)							37%	37%	50%			
Turn Bay Length (ft)						500						
50th Bay Block Time %												
95th Bay Block Time %												
Queuing Penalty (veh)												

Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 6 (9%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 10.9

Intersection LOS: B

Intersection Capacity Utilization 76.1%

ICU Level of Service C

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 6: Columbia Drive & NB Ramp	0
→ ø2	₹ ø3
39.6	31 8
← ø6	1 28
393	31 6

Intersection: 2: Bend

Movement	SB	SB	
Directions Served	T		
Maximum Queue (ft)	387	313	
Average Queue (ft)	221	63	
95th Queue (ft)	519	269	
Link Distance (ft)	300	300	
Upstream Blk Time (%)	0.05	0.00	
Queuing Penalty (veh)	34	2	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 4: SR 240 & SB Ramp

Movement	EB	EB	WB	WB	WB	SB	SB	B14	B14	B15
Directions Served	Т	T	L	T	T	L	LT	T	Т	T
Maximum Queue (ft)	238	216	413	492	109	178	184	228	193	86
Average Queue (ft)	157	135	296	167	80	154	156	104	98	17
95th Queue (ft)	254	224	488	436	117	211	219	254	234	74
Link Distance (ft)	955	955		466	466	127	127	175	175	187
Upstream Blk Time (%)				0.02		0.56	0.57	0.07	0.00	
Queuing Penalty (veh)				17		0	0	0	0	
Storage Bay Dist (ft)			400							
Storage Blk Time (%)			0.04							
Queuing Penalty (veh)			27							

Intersection: 5: Bend

Movement	
Directions Served	
Maximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
Link Distance (ft)	
Upstream Blk Time (%)	**************************************
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	
	8

Intersection: 6: Columbia Drive & NB Ramp

Movement	EB	EB	WB	WB	NB	NB	NB	B5	B5	B5	
Directions Served	T	T	Т	Т	L	LT	R	Т	Т	Т	
Maximum Queue (ft)	108	92	270	168	134	148	153	30	50	56	
Average Queue (ft)	66	56	194	133	110	106	104	6	10	17	
95th Queue (ft)	133	114	271	180	153	143	176	25	43	55	
Link Distance (ft)	466	466	1280	1280	86	86	86	169	169	169	
Upstream Blk Time (%)					0.15	0.20	0.20				
Queuing Penalty (veh)					0	0	0				
Storage Bay Dist (ft)											
Storage Blk Time (%)											
Queuing Penalty (veh)											

Nework Summary

Network wide Queuing Penalty: 80

m Volume for 95th percentile queue is metered by upstream signal.

Intersection: 2: Bend

SB	SB	
T		
411	350	
219	136	
526	412	
300	300	
0.06	0.01	
37	7	
	T 411 219 526 300 0.06	T 411 350 219 136 526 412 300 300 0.06 0.01

Intersection: 4: SR 240 & SB Ramp

Movement	EB	EB	EB	WB	WB	SB	SB	B14	B14	B15	
Directions Served	T	T	R	L	T	L	LT	T	T	T	
Maximum Queue (ft)	208	176	92	356	478	190	196	234	230	202	
Average Queue (ft)	170	145	18	230	348	181	183	139	138	121	
95th Queue (ft)	217	192	79	382	514	208	218	304	292	284	
Link Distance (ft)	955	955			475	140	140	175	175	187	
Upstream Blk Time (%)					0.01	0.69	0.64	0.33	0.12	0.31	
Queuing Penalty (veh)					12	0	0	0	0	0	
Storage Bay Dist (ft)			400	400							
Storage Blk Time (%)					0.01						
Queuing Penalty (veh)	0 W-111111	Treatment of the			7						

Intersection: 5: Bend

rement
ections Served
rimum Queue (ft)
rage Queue (ft)
Queue (ft)
Distance (ft)
tream Blk Time (%)
uing Penalty (veh)
age Bay Dist (ft)
age Blk Time (%)
uing Penalty (veh)

Intersection: 6: Columbia Drive & NB Ramp

Movement	EB	EB	WB	WB	NB	NB	B5	B5	B12	B11	
Directions Served	T	Т	T	R	LT	R	Т	T	Т	T	······································
Maximum Queue (ft)	87	88	1308	524	137	145	241	241	258	308	
Average Queue (ft)	32	24	614	105	134	144	240	192	235	222	
95th Queue (ft)	81	80	1202	450	137	146	241	237	274	420	
Link Distance (ft)	475	475	1286		87	87	169	169	186	290	
Upstream Blk Time (%)			0.02		0.78	0.41	0.67	0.29	0.50	0.32	
Queuing Penalty (veh)			0		0	0	0	0	0	0	
Storage Bay Dist (ft)				500							
Storage Blk Time (%)			0.04	0.00							
Queuing Penalty (veh)			24	0							

Intersection: 11: Bend

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: Bend

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Nework Summary

Network wide Queuing Penalty: 87

	_#	→	*	4	4	×	4	K	ě.
Lane Group	EBL	EBT	WBL	WBT	NBL	NET	SWL	SWT	
Lane Configurations	74.74		ሻሻ			^	*5		
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Satd. Flow (prot)	3303	0	3303	0	0	3406	1703	1792	
Flt Permitted	0.950		0.950				0.950		
Satd. Flow (perm)	3303	0	3303	0	0	3406	1703	1792	
Satd. Flow (RTOR)									
Volume (vph)	570	0	530	0	0	830	440	860	
Adj. Flow (vph)	600	0	558	0	0	874	463	905	
Lane Group Flow (vph)	600	0	558	0	0	874	463	905	
Turn Type	Prot	С	ustom				Prot		
Protected Phases	8					2	1	6	
Permitted Phases			4						
Total Split (s)	20.0	0.0	20.0	0.0	0.0	25.0	25.0	50.0	
Act Effct Green (s)	15.0		15.0			19.6	19.8	43.5	
Actuated g/C Ratio	0.23		0.23		3	0.29	0.30	0.65	
v/c Ratio	0.81		0.75			0.87	0.91	0.77	
Uniform Delay, d1	24.4		24.0			22.1	22.5	8.0	
Delay	28.1		25.7			26.8	38.1	9.1	
LOS	С		С			С	D	A	
Approach Delay		28.1		25.7		26.8		18.9	770 TOWNS IN THE TOWNS TO THE TOWN TO
Approach LOS		С		С		С		В	
Stops (vph)	514		468	A		747	437	569	
Fuel Used(gal)	10		7			14	10	12	
CO Emisions (g/hr)	688		459			995	705	873	
NOx Emisions (g/hr)	134		89			194	137	170	
VOC Emisions (g/hr)	160		106			230	163	202	
Dilemma Vehicles (#)	0		0			59	0	59	
Queue Length 50th (ft)	125		115		73.57	184	190	229	
Queue Length 95th (ft)	#200		167			#284	#357	386	
Internal Link Dist (ft)		254		211	685	601		986	
50th Up Block Time (%)									
95th Up Block Time (%)				= 0 - 7 / -					
Turn Bay Length (ft)				ille server					
50th Bay Block Time %									
95th Bay Block Time %									
Queuing Penalty (veh)									
ntersection Summary			i Selles I						
Cycle Length: 70								Ne E Chi	
Actuated Cycle Length: 6									
Control Type: Actuated-U	ncoordin	nated						description of the second	
/laximum v/c Ratio: 0.91									
ntersection Signal Delay:				Inte	ersectio	n LOS:	С		
ntersection Capacity Utili	zation 76	5.9%		ICL	J Level	of Serv	ice C		
95th percentile volume	e exceed	ls capa	city, que	eue may	be lon	ger.			
Queue shown is maxin	num afte	er two cy	cles.						

√ ø1	≯ ø2	ø4
26.8	25.8	20 s.
ø6		_ ≭ ₀8
50 s		20's

Intersection: 2: SB Ramp &

Movement	
Directions Served	SELENG TOO THE RESERVE OF THE SELECTION
Maximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 4: SB Ramp & Columbia Drive

Movement	EB	EB	WB	WB	NE	NE	SW	SW	Y 2011年1月1日 1月1日 1日 1
Directions Served	L	L	L	L	T	Т	1	T	COUNTRY TO MUCH TO MANUAL CONTRACT
Maximum Queue (ft)	226	180	119	144	247	226	358	193	
Average Queue (ft)	152	149	82	92	178	161	245	132	
95th Queue (ft)	214	181	134	154	239	235	378	202	
Link Distance (ft)	240	240	194	194	579	579	887	887	
Upstream Blk Time (%)	0.00								The state of the s
Queuing Penalty (veh)	0								
Storage Bay Dist (ft)			***************************************						
Storage Blk Time (%)									
Queuing Penalty (veh)				*					

Intersection: 16: Bend

Movement	SB	SB	
Directions Served	T		THE TANK THE PROPERTY OF THE P
Maximum Queue (ft)	434	396	
Average Queue (ft)	250	79	
95th Queue (ft)	588	340	
Link Distance (ft)	396	396	
Upstream Blk Time (%)	0.03	0.00	
Queuing Penalty (veh)	22	2	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

DESIGN

DECISIONS

Project Design Criteria Ramps & Collector Distributors

Matrix 4 Row 10	
-----------------	--

This checklist is to confirm interpretation of standards. Your project may require that additional/different/or fewer Design Elements be addressed.

Design Class	MDL-4 (Based on Project Analysis)					
Functional Class	Urban Principal Arterial					
Design Year	2029					
Design Speed /	45 MPH					
AADT	84000					
Truck Percentage	5.5%					
Right of Way Width	Varies as needed for cross section elements. See DM Figure 440-5a & 5b (May 2006)					

DESIGN ELEMENT	Design Level (B/M/F)	Standard	REFERENCE & COMMENTS
Horizontal Alignment	F		
Stopping Sight Distance		360'	DM Figure 650-1 (May 2006)
Max. Superelevation		10%	DM 642.04 (January 2005)
Vertical Alignment	F		
Maximum Grade		7%	DM Figure 440-6a (May 2007) for mainline in urban area and DM Figure 940-2 (January 2005) for ramp
Stopping Sight Distance		360'	DM Figure 650-11 & 12 (May 2006)
Passing Sight Distance		1625'	DM Figure 650-9 (May 2006)
Decision Sight Distance		800'	DM Figure 650-10 (May 2006)
Lane Width	F		
Number of Lanes		4	DM Figure 440-6a (May 2007)
Lane Width		12'	DM Figure 440-6a (May 2007)
Turning Roadway Width		Varies	DM Figure 641-2a (January 2005)
Shoulder Width	F		
Shoulder Width-Inside		Varies 1-4'	DM Figure 440-2 & 3, 6a & 6b (May 2007), DM 641.04 (5) (November 2006) for mainline DM 940-3 (2005) for ramp
Shoulder Width-Outside	4:	Varies 1-10'	DM Figure 440-2 & 3, 6a & 6b (May 2007), DM 641.04 (5) (November 2006) for mainline DM 940-3 (2005) for ramp

DESIGN ELEMENT	Design Level (B/M/F)	Standard	REFERENCE & COMMENTS
Lane Transition	F		
Channelization Tapers		L=VT	DM 620.07 (January 2005)
On/Off Connections	F		DM 940.06 (4) & (5), DM Figure 940-8, 9b, 10, 12a, 12b (September 2002) DM Figure 940-11a, 11b (January 2005)
Cross Slope Lane	F	2%	DM 640.04 (1) (November 2006)
Cross Slope Shoulder	F	2%	DM 640.04 (3) (November 2006), up 6% w/ justification
Fill/Ditch Slopes	F		
Fill Slopes		Varies	DM Figure 640-1 (November 2006)
Ditch In-slopes		Varies	DM Figure 640-1 (November 2006)
Access	F		DM Chapter 1430 (May 2007)
Clear Zone	F	Varies	DM Figure 700-1 (May 2006)
Signing	F		DM Chapter 820 (November 1999)
Delineation	F		DM Chapter 830 (May 2006)
Illumination	F		DM Chapter 840 (November 2006)
Basic Safety	Blank		
Vertical Clearance	F		DM Chapter 1120 (May 2007)
Bridge # 395/38S-S		16.5'	DM Figure 1120-1, for new bridge
Bicycles	F		DM Chapter 1020 (November 2006)
Pedestrians	F		DM Chapter 1025 (May 2006)
Ramp Terminals	F		
Design Vehicle		WB-67	DM Figure 910-3 (May 2006). Also, WB-67 is used for design analysis for both roundabouts
Turn Radii	F		
ntersection Radii - Left		50	DM Figure 910-10a through 10e (May 2006), N/A for roundabout design

Design Level (B/M/F)	Standard	REFERENCE & COMMENTS
	55	DM Figure 910-7 (January 2005), N
	00	DM 010 04 (2) (-) (M - 2000)
- F	90	DM 910.04 (2) (a) (May 2006), required limits (75°-105°)
F	Varies	DM Figure 910-17a & 17b (May 2006)
F		DM Chapter 710 (November 2006)
F		DM Chapter 710 (November 2006)
F		DM Chapter 710 (November 2006), N/A
	F F F	Level (B/M/F) Standard

Project Design Criteria Mainline – US 395 & SR 240 Matrix 3 Row, 11

This checklist is to confirm interpretation of standards. Your project may require that additional/different/or fewer Design Elements be addressed.

Design Class	MDL-4 (Based on Project Analysis)
Functional Class	Urban Principal Arterial
Design Year	2029
Design Speed	45 MPH
AADT	84000
Truck Percentage	5.5%
Right of Way Width	Varies as needed for cross section elements. See DM Figure 440-5a & 5b (May 2006)

DESIGN ELEMENT	Design Level (B/M/F)	Standard	REFERENCE & COMMENTS
Horizontal Alignment	F		
Stopping Sight Distance		360'	DM Figure 650-1 (May 2006)
Max. Superelevation		10%	DM 642.04 (November 2007)
Vertical Alignment	F		
Maximum Grade		7%	DM Figure 440-6 (November 2007)
Stopping Sight Distance		360'	DM Figure 650-1 (May 2006)
Passing Sight Distance		1625'	DM Figure 650-9 (May 2006)
Decision Sight Distance		800'	DM Figure 650-10 (May 2006)
Lane Width	F		
Number of Lanes		4	DM Figure 440-6 (November 2007)
Lane Width		12'	DM Figure 440-6 (November 2007)
Turning Roadway Width		Varies	DM Figure 641-2a (November 2006)
Shoulder Width	F		
Shoulder Width-Inside		Varies 1-4'	DM Figure 440-3 & 6 (November 2007)
Shoulder Width-Outside		Varies 1-10'	DM Figure 440-3 & 6 (November 2007)
Lane Transition	F		
Channelization Tapers		L=VT	DM 620.07 (January 2005)

US 395 Columbia Drive to SR 240 Rebuild Interchange

DESIGN ELEMENT	Design Level (B/M/F)	Standard	REFERENCE & COMMENTS
On/Off Connections	F		DM 940.06 (4) & (5)
Median Width	F	Varies	Figure 440-4 & 6 (November 2007)
Cross Slope Lane	F	2%	DM 640.04 (1) (November 2006)
Cross Slope Shoulder	r F	2%	DM 640.04 (3) (November 2006), up to 6% w/ justification
Fill/Ditch Slopes	F		
Fill Slopes		Varies	DM Figure 640-1 (November 2006)
Ditch In-slopes		6:1	DM Figure 640-1 (November 2006)
Access	F		DM Chapter 1430 (November 2007)
Clear Zone	F	Varies	DM Figure 700-1 (May 2006)
Signing	F		DM Chapter 820 (November 1999)
Delineation	F		DM Chapter 830 (May 2006)
Illumination	F		DM Chapter 840 (November 2006)
Basic Safety	Blank		
Bicycles	F		DM Chapter 1020 (November 2006)
Pedestrians	F		DM Chapter 1025 (May 2006)
Bridges			
Lane Width	F		
Bridge # 395/38S-S			
Number of Lanes		3	DM Figure 440-6 (November 2007)
Lane Width		12'	DM Figure 440-6 (November 2007)
Shoulder Width	F		
Bridge # 395/38S - S			
Shoulder Width-Inside		4'	DM Figure 440-6 (November 2007)
Shoulder Width-Outside		8'	Figure 940-3 (January 2005), shoulder is part of off-ramp

DESIGN ELEMENT	Design Level (B/M/F)	Standard	REFERENCE & COMMENTS
Vertical Clearance	F		DM Chapter 1120 (May 2007)
Bridge # 395/38S-S		16.5'	DM Figure 1120-1, for new bridge
Structural Capacity	F		
Bridge # 395/38S-S		HL-93	DM 1120.04 (1) (a) (May 2007)
Intersections	F		
Design Vehicle		WB-67	DM Figure 910-5 (November 2007). Also, WB-67 is used for roundabout design analysis.
Turn Radii	F		
Intersection Radii - Left		50	DM Figure 910-14a through 14e (November 2007
Intersection Radii - Right		70	DM Figure 910-11 (November 2007
Intersection Angle	F	90	DM 910.05 (2) (November 2007)
Intersection Sight Distance	F	Varies	DM Figure 910-22a (November 2007)
Barriers			
Terminals & Transition Sections	F		DM Chapter 710 (November 2006)
Standard Run	F		DM Chapter 710 (November 2006)
Bridge Rail	F		DM Chapter 710 (November 2006), N/A

GEOMETRIC

DATA

SPREADSHEET

Project Name: US 395/Columbia Drive to SR 240 Interchange Rebuild

Roundabout Design Parameters

This checklist is to confirm interpretation of standards. Your project may require that additional/different/or fewer Design Elements be addressed.

Current as of 11-07-2007

Design Data	ha familia	equite that additional differences besign Elements be addressed.	
Design Class	Multilane Roundabout	bout	
Design Year	2029		
Mainline Posted Speed (Design Speed)	Columbia Drive	mbia Drive 35 mph (35 mph) westbound; 60 mph eastbound (70 mph)	
Cross Road Posted Speed (Design Speed)	US 395 45 mph (US 395 45 mph (45 mph) (grade separated)	
Traffic Analysis	Completed July 2007	200	
Conceptual Approval	Approved September 6, 2007	1ber 6, 2007	
Geometric Approval			
	Reference/Date	Design Performance Objective	Determination
Design Vehicle Turning Path	DM 915.06(2)(a)	WB-67: use both lanes	Meets standard
	May-07		
Fastest Vehicle Paths	DM 915.06(2)(b)	All paths less than 25 mph, and less than 6 mph speed	Meets standard
	May-07	difference between consecutive & conflicting movements	
Natural Vehicle Paths	DM 915.06(2)(c)	Smooth path without path overlap	Meets standard
	May-07		
Design Components		Teardrop Roundabout	
Inscribed Circle Diameter (ICD)	DM 915.06(3)(a)	Meet capacity and relevant paths (turning, fastest, natural)	210' W 175' F
	May-07	150' minimum for 2-lane	
Approach Alignment	DM 915.06(3)(b)	Provide deflection	Meets standard
	May-07		
Entry	DM 915.06(3)(c)	Smooth entry path; no pedestrians present	Meets standard
	May-07		
Exit	DM 915.06(3)(d)	Smooth right-turn and exit paths; no pedestrians present	Meets standard
	May-07		
Central Island Diameter	DM 915.06(3)(a)	= ICD - [(lane width)*(# lanes)] - (truck apron width, if any)	Meets standard
	May-07		
Truck Apron	DM 915.06(3)(a)	Multi-lane, not needed with supporting paths	6' for overiszed veh.
	May-07		
Superelevation and Grades	DM 915.06(3)(f)	-2% cross slope; ±2% longitudinal grade desirable, ±4% max	Meets standard, 4%
	May-07		
Clear Zone	DM 915.06(3)(g)	Clear zone distance related to fastest path speeds	Meets standard 10'
	May-07		

Updated: 5 - 2007 ks Adapted: 8 - 2007 jj

Project Name: US 395/Columbia Drive to SR 240 Interchange Rebuild

Roundabout Design Parameters Continued

This checklist is to confirm interpretation of standards. Your project may require that additional/different/or fewer Design Elements be addressed,

Current as of 11-07-2007

Date North West Nay-07 110° 110° 110° 110° 110° 110° 110° 110	Design Element	Reference/	Design Pe	oformance Obje	erence/ Design Performance Objective (Wast Dansale	the state of the s	
North West		Date	8		SCIIVE (VVESI RO	undabout)	Determination
DM 910.05 WB-67 WB-67 May-07 100' 100' +2% DM fig 915-9 21 mph 21 mph May-07 -2% -2% DM fig 915-10 20 mph 19 mph May-07 >200' N/A +2% DM fig 915-12 18 mph N/A	Approach From		North	West	West-Slip	East-Half	
May-07 100° 100° 100° 142%	Design Vehicle	DM 910.05	WB-67	WB-67	WB-67	WB-67	Triick Route
100' 100' 100' +2% +2% +2% +2% +2% +2% +2%		May-07					DINON NORTH
May-07	R1 - Entry Path Radius		100,	100,	N/A	125'	
DM fig 915-9	Superelevation		+2%	+2%	N/A	+2%	
May-07 DM fig 915-10 DM fig 915-10 DM fig 915-11 DM fig 915-11 DM fig 915-12 DM fig 915-12 DM fig 915-21 DM fig 915-21 DM fig 915-21 DM fig 915-21 DM fig 915-24 DM fig 915-24	Speed (mph)	DM fig 915-9	21 mph	21 mph	N/A	23 mph	Meets Standard
115' 100' -2% -2% -2% DM fig 915-10 20 mph 19 mph May-07 >200' N/A +2% N/A DM fig 915-11 (note 1) N/A DM fig 915-12 18 mph N/A DM fig 915-21 110' 90' H2% +2% DM fig 915-21 119' 119' DM fig 915-21 112' 104' DM fig 915-24 116' N/A DM fig 915-24 116' N/A DM fig 915-24 116' N/A		May-07					
-2% -2% -2% -2% -2% -2% -2% -2% -2% -2%	R2 - Circulating Path Radius		115'	100,	A/N	125	
DM fig 915-10	Superelevation		-2%	-2%	N/A	-2%	
May-07 >200' N/A +2% N/A hay-07	Speed (mph)	DM fig 915-10	20 mph	19 mph	N/A	21 mph	Meets Standard
200° N/A +2% N/A N/A N/A N/A -2° N/A DM fig 915-12 18 mph N/A +2% DM fig 915-21 119° 119° DM fig 915-21 112° 104° DM fig 915-24 116° N/A N/A DM fig 915-24 116° N/A MAN-07 DM fig 915-24 116° N/A N/A N/A N/A DM fig 915-24 116° N/A N/A N/A N/A DM fig 915-24 116° N/A		May-07					
DM fig 915-11 (note 1) N/A DM fig 915-12 18 mph N/A DM fig 915-12 18 mph N/A DM fig 915-13 21 mph 20 mph May-07 +2% +2% DM fig 915-21 112' 104' DM fig 915-24 116' N/A DM fig 915-24 116' N/A DM fig 915-24 116' N/A	R3 - Exit Path Radius (1)		>200,	N/A	A/N	>>200	
DM fig 915-11 (note 1) N/A May-07 T5' N/A -2' N/A DM fig 915-12 18 mph N/A May-07 DM fig 915-13 21 mph 20 mph May-07 DM fig 915-21 119' 119' DM fig 915-21 112' 104' DM fig 915-24 136' 132' DM fig 915-24 116' N/A DM fig 915-24 116' N/A	Superelevation		+2%	N/A	A/N	-2%	
May-07 75' N/A -2' N/A -2' N/A DM fig 915-12 18 mph N/A May-07 100' 90' +2% -2' N/A 100' 90' +2% May-07 119' 119' DM fig 915-21 119' 119' DM fig 915-21 112' 104' DM fig 915-24 116' N/A DM fig 915-24 116' N/A	Speed (mph)		(note 1)	A/N	N/A	(note 1)	Stondard propage
75' N/A -2' N/A -2' N/A May-07 100' 90' +2% +2% +2% DM fig 915-13 21 mph 20 mph May-07 DM fig 915-21 119' 119' DM fig 915-22 112' 104' DM fig 915-24 136' 132' 2) DM fig 915-24 116' N/A						(1)	Otalidald, see Hote
-2' N/A DM fig 915-12 18 mph N/A May-07 100' 90' +2% DM fig 915-13 21 mph 20 mph May-07 20 mph DM fig 915-21 112' 104' DM fig 915-24 116' N/A DM fig 915-24 116' N/A DM fig 915-24 116' N/A DM fig 915-24 116' N/A	R4 - Left Turn Path Radius		75'	N/A	N/A	80'	
DM fig 915-12 18 mph N/A May-07 100' 90' +2% +2% DM fig 915-13 21 mph 20 mph May-07 20 mph DM fig 915-21 119' 119' DM fig 915-22 112' 104' DM fig 915-24 116' N/A DM fig 915-24 116' N/A DM fig 915-24 116' N/A	Superefevation		-2.	A/N	A/N	%6-	
May-07 100' 90' +2% +2% +2%	Speed (mph)	DM fig 915-12	18 mph	N/A	N/A	18 mph	Meets Standard
100' 90' +2% +2% +2% +2%		May-07					
+2% +2% +2%	35 - Right Turn Path Radius		100,	,06	115'	₹N	
DM fig 915-13 21 mph 20 mph May-07	Superelevation		+2%	+2%	+2%	A/N	
May-07 DM fig 915-21 DM fig 915-22 DM fig 915-23 DM fig 915-24 DM fig 915-24 DM fig 915-24 May 07 May 07	Speed (mph)		21 mph	20 mph	22 mph	N/A	Meets Standard
DM fig 915-21 119' 119' 119' 119' DM fig 915-22 112' 104' N/A N/A N/A 132' 2) DM fig 915-24 116' N/A N/A 132' 2)		May-07					
DM fig 915-22 112' 104' DM fig 915-23 N/A N/A DM fig 915-24 136' 132' DM fig 915-24 116' N/A	Approach Stopping Sight Distance (2)	DM fig 915-21	119,	119'	N/A	131'	N/A no crosswalk
DM fig 915-23 N/A N/A N/A DM fig 915-24 136' 132' 2) DM fig 915-24 116' N/A MAY 07	Circulating Stopping Sight Distance (2)	DM fig 915-22	112'	104	N/A	119'	Meets Standard
2) DM fig 915-24 136' 132' DM fig 915-24 116' N/A	Exit Stopping Sight Distance (2)	DM fig 915-23	N/A	N/A	N/A	N/A	N/A no crosswalk
DM fig 915-24 116' N/A M37,07	S1 - Entering Stream Sight Distance (2)	DM fig 915-24	136'	132'	N/A	144'	Meets Standard
	S2- Circulating Stream Sight Distance (2)	DM fig 915-24	116'	N/A	N/A	116'	Meets Standard
		May-07					

Note 1: Exit speed controlled by circulating speed plus acceleration; Note 2: Sight distances correspond to the column rather than the intersection

Updated: 5 - 2007 ks Adapted: 8 - 2007 jj

Project Name: US 395/Columbia Drive to SR 240 Interchange Rebuild

Roundabout Design Parameters Continued

This checklist is to confirm interpretation of standards. Your project may require that additional/different/or fewer Design Elements be addressed.

Current as of 11-07-2007

	Keterence/	Design Po	erormance up	Design Perormance Objective (East Roundabout)	indabout)	Determination
	Date				(350000	
Approach From		East	South	South Slip	West-half	
Design Vehicle	DM 910.05	WB-67	WB-67	WB-67	WB-67	Truck Route
	May-07					O No.
R1 - Entry Path Radius		115'	150'	125'	125'	
Superelevation		+2%	-2%	-2'	+2%	
Speed (mph)	DM fig 915-9	22 mph	23 mph	21 mph	23 mph	Meets Standard
	May-07					
R2 - Circulating Path Radius		75'	.09	A/N	100,	
Superelevation		-2%	-2%	A/N	-2%	
Speed (mph)	DM fig 915-10	18 mph	17 mph	N/A	19 mph	Meets Standard
	May-07					
R3 - Exit Path Radius (1)		>200,	A/N	ΑN	>>200,	
Superelevation		+2%	A/N	ΑN	-2%	
Speed (mph)	DM fig 915-11	(note 1)	A/N	N/A	(note 1)	Standard see note
	May-07				,	700
R4 - Left Turn Path Radius		N/A	,09	ΑN	,09	
Superelevation		ΑΝ	-2%	N/A	-2%	
Speed (mph)	DM fig 915-12	N/A	17 mph	A/N	17 mph	Meets Standard
	May-07					
R5 - Right Turn Path Radius		N/A	A/A	125'	N/A	
Superelevation		N/A	N/A	+2%	N/A	
Speed (mph)	DM fig 915-13	N/A	N/A	23 mph	N/A	Meets Standard
	May-07					
Approach Stopping Sight Distance (2)	DM fig 915-21	127'	131'	119'	131'	N/A no crosswalk
Circulating Stopping Sight Distance (2)	DM fig 915-22	94'	.28	N/A	104"	Meets Standard
Exit Stopping Sight Distance (2)	DM fig 915-23	N/A	N/A	N/A	N/A	N/A no crosswalk
S1 - Entering Stream Sight Distance (2)	DM fig 915-24	131'	129'	N/A	137'	Meets Standard
S2- Circulating Stream Sight Distance (2)	DM fig 915-24	N/A	109'	N/A	109,	Meets Standard
	Mon 07					

Note 1: Exit speed controlled by circulating speed plus acceleration; Note 2: Sight distances correspond to the column rather than the intersection

Updated: 5 - 2007 ks Adapted: 8 - 2007 jj

Project Name: US 395/Columbia Drive to SR 240 Interchange Rebuild

Roundabout Design Parameters Continued

This checklist is to confirm interpretation of standards. Your project may require that additional/different/or fewer Design Elements be addressed.

Current as of 11-07-2007

	Reference/Date	Docing Bodownood Okindin	
Right-Turn Slip Lane	DM 915 06/3/(i)	Provide as peeded by traffic analysis	Determination
		Toylor as needed by name analysis	West and South
	May-07		Entries
Add and Drop or Bypass Lane	DM 915.06(3)(j)	Provide as needed by traffic analysis	North and South
	May-07		Entries
Railroad Crossing	DM 915.06(3)(k)	No railroads near this roundabout	N/A no railroad
	May-07		
Pedestrians	DM 915.07	No pedestrians allowed in interchange area	N/A no pedestrians
	May-07		
Bicycles	DM 915.08	No bicycles allowed in interchange area	N/A no bicycles
	May-07		
Signing and Pavement Marking	DM 915.09	Provide signing and pavement markings per the MUTCD	Meets Standard
	May-07		
Illumination	DM 915.10	Provide illumination at each conflict point and at curb	Meets Standard
	May-07	terminals	
Access, Parking and Transit-Facilities	DM 915.11	No access, or parking, or transit stops within the corner	Meets Standard
	May-07	clearance distance	

FASTEST

NATURAL

AND TRUCK

TURNING PATHS

SIGHT

DISTANCE

DISPLAY

L2527 Jeremy Jewkes 11-07-2007

PRELIMINARY SIGNING AND ILLUMINATION PLAN

PRELIMINARY

CHANNELIZATION

PLANS

PRELIMINARY

NOT TO SCALE

---- FACE OF CURB AND GUTTER

FILE NAME	K:\Projects\XL2527\CADD\Plansfor	Approval\L2527 PS CP.dgn					
TIME	8:09:38 AM			1	REGION	STATE	FED.AID PROJ.NO.
DATE	2/21/2008			1	NO.		PED.AID PROJ.NO.
PLOTTED BY	ganskem				10	WASH	
DESIGNED BY	K. SABONG/ J. JEWKES			-	JOB)	NUMBER	
ENTERED BY	M. GANKSE						
CHECKED BY	K. DANIEL			_	CONTR	RACT NO.	LOCATION NO.
PROJ. ENGR.	M. DAVARI						VI 0505
REGIONAL ADM.	D. WHITEHOUSE	REVISION	DATE	BY			XL2527

		- 1	
		1	
		1	
		1	
		. [
-			

₹
Washington State
Department of Transportation

US	395	MP	18.05	- M	P 18	3.59
COL	UMB	ia c	PRIVE	то	SR	240
R	REBU	ILD	INTER	RCH/	ANGI	E
c	HAN	NEL	IZATIO	N F	PLAN	1

CP5
SHEET
OF
SHEETS